Add like
Add dislike
Add to saved papers

Effect of oxidative stress in rostral ventrolateral medulla on sympathetic hyperactivity after traumatic brain injury.

Sympathetic hyperactivity occurs in a subgroup of patients after traumatic brain injury (TBI). The rostral ventrolateral medulla (RVLM) is a key region for the activity of sympathetic nervous system. Oxidative stress in the RVLM is proved to be responsible for the increased level of sympathetic activity in animal models of hypertension and heart failure. In this study, we investigated whether oxidative stress in the RVLM contributed to the development of sympathetic hyperactivity after TBI in rats. Model of diffuse axonal injury was induced using Sprague-Dawley rats, and level of mean arterial pressure (MAP) and plasma Norepinephrine (NE) was measured to evaluate the sympathetic activity. For the assessment of oxidative stress, expression of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) in the RVLM was determined. Microinjection of Tempol into the RVLM was performed to determine the effect of oxidative stress on sympathetic hyperactivity. According to the results, TBI led to elevated MAP and plasma NE in rats. It also induced a significantly increased level of ROS, MDA production and decreased level of SOD in the RVLM. The sympathetic activity, ROS, and MDA in the RVLM decreased significantly after microinjection of Tempol. Therefore, the present results suggested that oxidative stress in the RVLM was involved in the development of sympathetic hyperactivity following TBI. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app