Add like
Add dislike
Add to saved papers

Renal mineralocorticoid receptor expression is reduced in lipoatrophy.

FEBS Open Bio 2019 Februrary
Obesity is a condition characterized by adipose tissue hypertrophy; it is estimated that the obesity epidemic accounted for 4 million deaths in 2015 and that 70% of these were due to cardiovascular disease (CVD). One of the mechanisms linking obesity to CVD is the ability of adipose tissue to secrete circulating factors. We hypothesized that adipose tissue and its secretory products may influence mineralocorticoid receptor (MR) expression. Here, we showed that expression of MR and its downstream targets ( Cnksr3 , Scnn1b , and Sgk1 ) were significantly reduced in the kidneys of peroxisome proliferator-activated receptor-γ null ( Pparg Δ/Δ ) and A-ZIP/F-1 (AZIPtg/+ ) lipoatrophic mice with respect to their controls. Intriguingly, MR expression was also found to be significantly reduced in the kidneys of genetically obese ob/ob mice. Our data suggest that adipose tissue contributes to the regulation of MR expression. Given that leptin deficiency seems to be the major feature shared by Pparg Δ/Δ , AZIPtg/+ , and ob/ob mice, we speculate that adipose tissue modulates MR expression through the leptin system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app