Add like
Add dislike
Add to saved papers

Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals.

Epilepsy is one of the most common neurological disease worldwide. It is diagnosed by analyzing a long electroencephalogram (EEG) recording in a clinical environment, which may be much prone to errors and a time-consuming task. In this paper, a methodology for the classification of an epileptic seizure is proposed for analyzing EEG signals. EEG signal is decomposed into intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). A fusion, of the extracted non-linear and spike-based features from each of the IMF signals, is made. The parameters of five machine learning algorithms; k-nearest neighbor (k-NN), extreme learning machine (ELM), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) are optimized, as well as a set of the significant features is chosen using grasshopper optimization algorithm (GOA). These classifiers with their optimized parameters are ensembled together for the classification of epileptic seizures. The results show that ensemble classifier performs better than individual classifier. A comparison of the proposed methodology with state of the art epileptic seizure detection techniques is also made for validation. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app