Add like
Add dislike
Add to saved papers

Layer-specific involvement of endocannabinoid signaling in muscarinic-induced long-term depression in layer 2/3 pyramidal neurons of rat visual cortex.

Brain Research 2019 Februrary 10
Neuromodulatory facilitation of long-term synaptic plasticity is important in learning, memory, and experience-dependent cortical plasticity. Although muscarinic-induced long-term depression (mLTD) in the visual cortex is well known, its cellular mechanisms are not fully understood yet. Since endocannabinoid signaling mediates presynaptic expression of LTD in various brain areas including the primary visual cortex of rats, we investigated the involvement of endocannabinoids in the induction of mLTD in different dendritic compartments of layer 2/3 pyramidal neurons. With an unloading experiment of FM1-43 as an indicator of synaptic vesicle recycling, we confirmed that layer 1 and layer 4 stimulations mainly activated distal apical (in layer 1) and perisomatic (in layer 2/3) dendritic compartments, respectively. Bath application of muscarine (10 min) induced LTD in synaptic inputs activated by stimulation of layers 1 (L1-mLTD) and 4 (L2/3-mLTD). Both mLTDs were blocked by intracellular Ca2+ chelator BAPTA and bath application of NMDA receptor antagonist D-AP5. However, only L2/3-mLTD exhibited an increase in paired-pulse ratio. In addition, only L2/3-mLTD was blocked by treatment with CB1 receptor antagonist AM251. Both mLTDs were blocked by intracellular NMDA receptor antagonist MK801, but not by glia-specific metabolic inhibitor fluoroacetate, implying that neither presynaptic NMDA receptors nor astrocytes are involved in mLTD. These results suggest that L2/3-mLTD is expressed presynaptically via retrograde endocannabinoid signaling while L1-mLTD is endocannabinoid independent in layer 2/3 pyramidal neurons of the visual cortex. Therefore, layer-specific involvement of endocannabinoids in the induction of mLTD might play an important role in cortical development and information processing in the neocortex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app