Add like
Add dislike
Add to saved papers

Stable and efficient delivery of DNA to Bacillus subtilis (natto) using pLS20 conjugational transfer plasmids.

FEMS Microbiology Letters 2019 Februrary 7
Bacillus subtilis (natto) is generally regarded as a safe bacterium and used as a host for the production of several materials. However, genetic engineering of B. subtilis (natto) is not well established because of poor DNA delivery methods and the lack of a standard strain for the aim. Here, we developed a genetic delivery tool in B. subtilis (natto) using the pLS20 conjugational plasmid (65 kbp). Transmission of pLS20 from B. subtilis 168 to wild-type B. subtilis (natto) did not occur via established mating protocols. We isolated B. subtilis (natto) mutants showing dramatically increased recipient activity. Whole-genome sequence analyses revealed three common alterations: mutations in the restriction endonuclease gene and in the methyl-accepting chemotaxis protein gene, and a 43-kbp deletion at the genome replication termination locus. A representative strain named NEST116 was generated as the first B. subtilis (natto) strain suitable for exploring pLS20-based genetic engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app