Add like
Add dislike
Add to saved papers

Non-destructive mapping of long-range dislocation strain fields in an epitaxial complex metal oxide.

Nano Letters 2019 Februrary 7
The misfit dislocations formed at heteroepitaxial interfaces create long-ranging strain fields in addition to the epitaxial strain. For systems with strong lattice coupling, such as ferroic oxides, this results in unpredictable and potentially debilitating functionality and device performance. In this work, we use dark-field x-ray microscopy to map the lattice distortions around misfit dislocations in an epitaxial film of bismuth ferrite (BiFeO3) - a well-known multiferroic. We demonstrate the ability to precisely quantify weak, long-ranging strain fields and their associated symmetry lowering without modifying the mechanical state of the film. We isolate the screw and edge components of the individual dislocations and show how they result in weak charge heterogeneities via flexoelectric coupling. We show that even systems with small lattice mismatches and additional mechanisms of stress relief (such as mechanical twinning) may still give rise to measurable charge and strain heterogeneities that extend over mesoscopic length scales. This sets more stringent physical limitations on device size, dislocation density and the achievable degree of lattice mismatch in epitaxial systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app