Add like
Add dislike
Add to saved papers

Construction and Characterization of a Medium Copy Number Expression Vector Carrying Auto-Inducible dps Promoter to Overproduce a Bacterial Superoxide Dismutase in Escherichia coli.

Molecular Biotechnology 2019 Februrary 6
Medium copy number expression vector and auto-inducible promoter could be a solution for producing recombinant therapeutic proteins in industrial scale regarding plasmid stability, cost, and product quality. This work aimed to construct a medium copy number pBR322-based expression vector carrying auto-inducible promoter, determine its ability to express heterologous gene, and study its segregational stability. Three stationary-phase promoters of Escherichia coli genes (gadA, dps and sbmC) were used to produce a superoxide dismutase from Staphylococcus equorum (rMnSODSeq) coding region from pBR322Δtet (pBR322-mini). Four plasmids were constructed with different promoters, i.e., T7 (pBMsod), gadA (pMCDsod), dps (pCADsod), and sbmC (pCDSsod) using pBR322-mini as backbone. Results showed that rMnSODSeq expression from pBMsod was significantly higher than that from pJExpress414sod (high copy number plasmid). Meanwhile, rMnSODSeq from pCADsod (auto-inducible promoter) was as high as from pBMsod (IPTG-inducible T7 promoter). rMnSODSeq expressed from pCADsod when bacterial cells entered stationary phase appeared as an active protein band of 23.5 kDa when analyzed by zymography and SDS-PAGE. pCADsod displayed the highest stability compared with pBMsod and pJEXpress414sod by plasmid retention assay. We demonstrate the use of an auto-inducible dps promoter to express high level of heterologous protein, an SOD of S. equorum, from a stable expression vector with medium copy number.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app