Add like
Add dislike
Add to saved papers

Multicolor upconversion luminescence of dye-coordinated Er 3+ at the interface of Er 2 O 3 and CaF 2 nanoparticles.

Multicolor upconversion luminescence of Er3+ was successfully enhanced by optimizing the interface in dye-coordinated nanoparticles with a core/shell structure. Red and green upconversion emissions of Er3+ were obtained at the interface of oxide nanoparticles via the intramolecular energy transfer from the coordinating squaraine dye with high light-absorption ability, which was more efficient than emissions through the energy transfer from metal ions such as Yb3+ . Additionally, CaF2 nanoparticles as a core material minimized the energy loss with nonradiative downward relaxations in Er3+ , resulting in the observation of unusual blue upconversion emissions from the upper energy level of Er3+ by nonlaser excitation using a continuous-wave (CW) Xe lamp at an excitation power of 1.2 mW/cm2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app