Add like
Add dislike
Add to saved papers

On-demand production of femtoliter drops in microchannels and their use as biological reaction compartments.

Analytical Chemistry 2019 Februrary 5
We present a method allowing to produce monodisperse droplets with volumes in the femtoliter range in a microchannel on demand. The method utilizes pulsed electric fields deforming the interface between an aqueous and an oil phase and pinch-ing off droplets. Water and xanthan gum solutions are considered as disperse-phase liquids, and it is shown that the method can be applied even to solutions with a zero-shear rate viscosity more than 104 times higher than that of water. The droplet formation regimes are explored by systematically varying the pulse amplitude and duration as well as the salt concentration. The dependence of the process on the pulse amplitude can be utilized to tune the droplet size. To demonstrate the applica-bility of the electric-field-driven droplet generator, it is shown that the droplets can be used as versatile biological reaction compartments. It is proven that droplets containing a cell-free transcription-translation system execute gene transcription and protein biosynthesis in a timely and programmable fashion. Moreover, it is verified that biomolecules inside the aque-ous droplets such as small RNAs can be diffusionally activated from the outside to induce a ligand-driven biochemical switch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app