Add like
Add dislike
Add to saved papers

Stabilities and novel electronic structures of three carbon nitride bilayers.

Scientific Reports 2019 January 32
We predict three novel phases of the carbon nitride (CN) bilayer, denoted α-C2 N2 , β-C2 N2 and γ-C4 N4 , respectively. All of them consist of two CN sheets connected by C-C covalent bonds. The phonon dispersions reveal that all these phases are dynamically stable, because no imaginary frequency is present. The transition pathway between α-C2 N2 and β-C2 N2 is investigated, which involves bond-breaking and bond-reforming between C and N. This conversion is difficult, since the activation energy barrier is 1.90 eV per unit cell, high enough to prevent the transformation at room temperature. Electronic structure calculations show that all three phases are semiconductors with indirect band gaps of 3.76/5.22 eV, 4.23/5.75 eV and 2.06/3.53 eV, respectively, by PBE/HSE calculation. The β-C2 N2 has the widest band gap among the three phases. All three bilayers can become metallic under tensile strain, and the indirect gap of γ-C4 N4 can turn into a direct one. γ-C4 N4 can become an anisotropic Dirac semimetal under uniaxial tensile strain. Anisotropic Dirac cones with high Fermi velocity of the order of 105 m/s appear under 12% strain. Our results suggest that the three two-dimensional materials have potential applications in electronics, semiconductors, optics and spintronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app