Add like
Add dislike
Add to saved papers

A Scale Mixture-based Stochastic Model of Surface EMG Signals with Variable Variances.

OBJECTIVE: Surface electromyogram (EMG) signals have typically been assumed to follow a Gaussian distribution. However, the presence of non-Gaussian signals associated with muscle activity has been reported in recent studies, and there is no general model of the distribution of EMG signals that can explain both non-Gaussian and Gaussian distributions within a unified scheme.

METHODS: In this paper, we describe the formulation of a non-Gaussian EMG model based on a scale mixture distribution. In the model, an EMG signal at a certain time follows a Gaussian distribution, and its variance is handled as a random variable that follows an inverse gamma distribution. Accordingly, the probability distribution of EMG signals is assumed to be a mixture of Gaussians with the same mean but different variances. The EMG variance distribution is estimated via marginal likelihood maximization.

RESULTS: Experiments involving nine participants revealed that the proposed model provides a better fit to recorded EMG signals than conventional EMG models. It was also shown that variance distribution parameters may reflect underlying motor unit activity.

CONCLUSION: This study proposed a scale mixture distribution-based stochastic EMG model capable of representing changes in non-Gaussianity associated with muscle activity. A series of experiments demonstrated the validity of the model and highlighted the relationship between the variance distribution and muscle force.

SIGNIFICANCE: The proposed model helps to clarify conventional wisdom regarding the probability distribution of surface EMG signals within a unified scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app