Add like
Add dislike
Add to saved papers

Fasudil Promotes BMSC Migration via Activating the MAPK Signaling Pathway and Application in a Model of Spinal Cord Injury.

Bone marrow-derived mesenchymal stem cells (BMSCs) are considered as transplants for the treatment of central nervous system (CNS) trauma, but the therapeutic effect is restricted by their finite mobility and homing capacity. Fasudil (FAS), a potent Rho kinase inhibitor, has been reported to alleviate nerve damage and induce the differentiation of BMSCs into neuron-like cells. However, the effect of FAS on the migration of BMSCs remains largely unknown. The present study revealed that FAS significantly enhanced the migration ability and actin stress fiber formation of BMSCs in vitro with an optimal concentration of 30  μ mol/L. Moreover, we found that activation of the MAPK signaling pathway was involved in these FAS-mediated phenomena. In vivo, cells pretreated with FAS showed greater homing capacity from the injection site to the spinal cord injury site. Taken together, the present results indicate that FAS acts as a promoting factor of BMSC migration both in vitro and in vivo, possibly by inducing actin stress fiber formation via the MAPK signaling pathway, suggesting that FAS might possess synergistic effect in stem cell transplantation of CNS trauma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app