Add like
Add dislike
Add to saved papers

Magnetic-field effects on methane-hydrate kinetics and potential geophysical implications: Insights from non-equilibrium molecular dynamics.

We have conducted non-equilibrium molecular-dynamics (NEMD) simulation to show that externally-applied magnetic fields, including their reversals in direction, have important effects on gas-release dynamics from methane hydrates. In particular, we apply fluctuation-dissipation analysis in the guise of Onsager's hypothesis to study hydrate kinetics at lower applied-field intensities, including temporary hydrate destabilisation in the wake of field-polarity switch; we scale down to the lowest practicable field intensities, of the order of 1 T. We conjecture, that these NEMD-based findings, particularly those involving polarity switch, may have ramifications for superchron-related Earth's magnetic-field polarity swaps affecting methane release into the geosphere, although a good deal of further work would be needed to provide a more definitive causal link.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app