Add like
Add dislike
Add to saved papers

A bipartite boundary element restricts UBE3A imprinting to mature neurons.

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A , a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript ( UBE3A-ATS ) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A , demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app