Add like
Add dislike
Add to saved papers

A Flower-Specific Phospholipase D Is a Stigmatic Compatibility Factor Targeted by the Self-Incompatibility Response in Brassica napus.

Current Biology : CB 2019 January 10
Self-incompatibility (SI) is a genetic mechanism in hermaphroditic flowers that prevents inbreeding by rejection of self-pollen, while allowing cross- or genetically diverse pollen to germinate on the stigma to successfully fertilize the ovules. In Brassica, SI is initiated by the allele-specific recognition of pollen-encoded, secreted ligand (SCR/SP11) by the stigmatic receptor kinase S-locus receptor kinase (SRK), resulting in activation of SRK through phosphorylation [1-3]. Once activated, this phospho-relay converges on intracellular compatibility factors, which are immediately targeted for degradation by the E3 ligase, ARC1, resulting in the pollen rejection response [4, 5]. Through proteomics approach using proteins from SI activated stigmas of Brassica napus, we identified phospholipase D α1 (PLDα1) as one of the candidates that is most likely targeted for degradation after SI [6]. PLDα1 is enriched in the stigmas and functions as a stigmatic compatibility factor as loss of PLDα1 compromised compatible pollination, while overexpression of PLDα1 in self-incompatible stigmas led to breakdown of SI response. PLDα1 can be ubiquitinated by ARC1 and accumulate in ARC1-suppressed lines, confirming PLDα1 as a target of ARC1 during SI response. Addition of phosphatidic acid (PA) to PLDα1-deficient stigmas was sufficient to rescue compatibility, suggesting an essential role for PA generated by PLDα1 for compatible interactions. We propose that PA produced by PLDα1 activity during compatible pollination promotes vesicle fusion at the membrane to facilitate exocytosis necessary for pollen germination to occur, while SI response could abrogate this process by targeting PLDα1 for degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app