Read by QxMD icon Read

Current Biology: CB

Toni I Gossmann, Achchuthan Shanmugasundram, Stefan Börno, Ludovic Duvaux, Christophe Lemaire, Heiner Kuhl, Sven Klages, Lee D Roberts, Sophia Schade, Johanna M Gostner, Falk Hildebrand, Jakob Vowinckel, Coraline Bichet, Michael Mülleder, Enrica Calvani, Aleksej Zelezniak, Julian L Griffin, Peer Bork, Dominique Allaine, Aurélie Cohas, John J Welch, Bernd Timmermann, Markus Ralser
Some species responded successfully to prehistoric changes in climate [1, 2], while others failed to adapt and became extinct [3]. The factors that determine successful climate adaptation remain poorly understood. We constructed a reference genome and studied physiological adaptations in the Alpine marmot (Marmota marmota), a large ground-dwelling squirrel exquisitely adapted to the "ice-age" climate of the Pleistocene steppe [4, 5]. Since the disappearance of this habitat, the rodent persists in large numbers in the high-altitude Alpine meadow [6, 7]...
May 7, 2019: Current Biology: CB
Lehti Saag, Margot Laneman, Liivi Varul, Martin Malve, Heiki Valk, Maria A Razzak, Ivan G Shirobokov, Valeri I Khartanovich, Elena R Mikhaylova, Alena Kushniarevich, Christiana Lyn Scheib, Anu Solnik, Tuuli Reisberg, Jüri Parik, Lauri Saag, Ene Metspalu, Siiri Rootsi, Francesco Montinaro, Maido Remm, Reedik Mägi, Eugenia D'Atanasio, Enrico Ryunosuke Crema, David Díez-Del-Molino, Mark G Thomas, Aivar Kriiska, Toomas Kivisild, Richard Villems, Valter Lang, Mait Metspalu, Kristiina Tambets
In this study, we compare the genetic ancestry of individuals from two as yet genetically unstudied cultural traditions in Estonia in the context of available modern and ancient datasets: 15 from the Late Bronze Age stone-cist graves (1200-400 BC) (EstBA) and 6 from the Pre-Roman Iron Age tarand cemeteries (800/500 BC-50 AD) (EstIA). We also included 5 Pre-Roman to Roman Iron Age Ingrian (500 BC-450 AD) (IngIA) and 7 Middle Age Estonian (1200-1600 AD) (EstMA) individuals to build a dataset for studying the demographic history of the northern parts of the Eastern Baltic from the earliest layer of Mesolithic to modern times...
May 7, 2019: Current Biology: CB
Gui-Lian Sheng, Nikolas Basler, Xue-Ping Ji, Johanna L A Paijmans, Federica Alberti, Michaela Preick, Stefanie Hartmann, Michael V Westbury, Jun-Xia Yuan, Nina G Jablonski, Georgios Xenikoudakis, Xin-Dong Hou, Bo Xiao, Jian-Hui Liu, Michael Hofreiter, Xu-Long Lai, Axel Barlow
Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an ∼5,000-year-old giant panda from Jiangdongshan, Tengchong County in Yunnan Province, China...
May 7, 2019: Current Biology: CB
Daniel M van Es, Wietske van der Zwaag, Tomas Knapen
The purported role of the cerebellum has shifted from one that is exclusively sensorimotor related to one that encompasses a wide range of cognitive and associative functions [1-5]. Within sensorimotor areas of the cerebellum, functional organization is characterized by ipsilateral representations of the body [6]. Yet, in the remaining cerebellar cognitive and associative networks, functional organization remains less well understood. Regions of cerebral cortex [7-9] and subcortex [10] important for visual perception and cognition are organized topographically: neural organization mirrors the retina...
May 6, 2019: Current Biology: CB
Stef Bokhorst, Peter Convey, Rien Aerts
Biodiversity is threatened by climate change and other human activities [1], but to assess impacts, we also need to identify the current distribution of species on Earth. Predicting abundance and richness patterns is difficult in many regions and especially so on the remote Antarctic continent, due to periods of snow cover, which limit remote sensing, and the small size of the biota present. As the Earth's coldest continent, temperature and water availability have received particular attention in understanding patterns of Antarctic biodiversity [2], whereas nitrogen availability has received less attention [3]...
May 2, 2019: Current Biology: CB
Amelia M Randich, David T Kysela, Cécile Morlot, Yves V Brun
Temperate phages constitute a potentially beneficial genetic reservoir for bacterial innovation despite being selfish entities encoding an infection cycle inherently at odds with bacterial fitness. These phages integrate their genomes into the bacterial host during infection, donating new but deleterious genetic material: the phage genome encodes toxic genes, such as lysins, that kill the bacterium during the phage infection cycle. Remarkably, some bacteria have exploited the destructive properties of phage genes for their own benefit by co-opting them as toxins for functions related to bacterial warfare, virulence, and secretion...
April 30, 2019: Current Biology: CB
Yong Yang, Isaac Edery
Sleep is fundamental to animal survival but is a vulnerable state that also limits how much time can be devoted to critical wake-dependent activities [1]. Although many animals are day-active and sleep at night, they exhibit a midday nap, or "siesta," that can vary in intensity and is usually more prominent on warm days. In humans, the balance between maintaining the wake state or sleeping during the day has important health implications [2], but the mechanisms underlying this dynamic regulation are poorly understood...
April 30, 2019: Current Biology: CB
Haoxuan Liu, Jianzhi Zhang
Mutation is the ultimate genetic source of evolution and biodiversity, but to what extent the environment impacts mutation rate and spectrum is poorly understood. Past studies discovered mutagenesis induced by antibiotic treatment or starvation, but its relevance and importance to long-term evolution is unclear because these severe stressors typically halt cell growth and/or cause substantial cell deaths. Here, we quantify the mutation rate and spectrum in Saccharomyces cerevisiae by whole-genome sequencing following mutation accumulation in each of seven environments with relatively rapid cell growths and minimal cell deaths...
April 30, 2019: Current Biology: CB
Hannah Haberkern, Melanie A Basnak, Biafra Ahanonu, David Schauder, Jeremy D Cohen, Mark Bolstad, Christopher Bruns, Vivek Jayaraman
Studying the intertwined roles of sensation, experience, and directed action in navigation has been facilitated by the development of virtual reality (VR) environments for head-fixed animals, allowing for quantitative measurements of behavior in well-controlled conditions. VR has long featured in studies of Drosophila melanogaster, but these experiments have typically allowed the fly to change only its heading in a visual scene and not its position. Here we explore how flies move in two dimensions (2D) using a visual VR environment that more closely captures an animal's experience during free behavior...
April 29, 2019: Current Biology: CB
Günter G Lehretz, Sophia Sonnewald, Csaba Hornyik, José M Corral, Uwe Sonnewald
Understanding tuberization in the major crop plant potato (Solanum tuberosum L.) is of importance to secure yield even under changing environmental conditions. Tuber formation is controlled by a homolog of the floral inductor FLOWERING LOCUS T, referred to as SP6A. To gain deeper insights into its function, we created transgenic potato plants overexpressing a codon-optimized version of SP6A, SP6Acop , to avoid silencing effects. These plants exhibited extremely early tuberization at the juvenile stage, hindering green biomass development and indicating a tremendous shift in the source sink balance...
April 26, 2019: Current Biology: CB
Román A Corfas, Tarun Sharma, Michael H Dickinson
Foraging animals may benefit from remembering the location of a newly discovered food patch while continuing to explore nearby [1, 2]. For example, after encountering a drop of yeast or sugar, hungry flies often perform a local search [3, 4]. That is, rather than remaining on the food or simply walking away, flies execute a series of exploratory excursions during which they repeatedly depart and return to the resource. Fruit flies, Drosophila melanogaster, can perform this food-centered search behavior in the absence of external landmarks, instead relying on internal (idiothetic) cues [5]...
April 25, 2019: Current Biology: CB
Chao Cai, Nadia A Lanman, Kelley A Withers, Alyssa M DeLeon, Qiong Wu, Michael Gribskov, David E Salt, Jo Ann Banks
Arsenic is a carcinogenic contaminant of water and food and a growing threat to human health in many regions of the world. This study focuses on the fern Pteris vittata (Pteridaceae), which is extraordinary in its ability to tolerate and hyperaccumulate very high levels of arsenic that would kill any other plant or animal outside the Pteridaceae. Here, we use RNA-seq to identify three genes (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (PvGAPC1), ORGANIC CATION TRANSPORTER 4 (PvOCT4), and GLUTATHIONE S-TRANSFERASE (PvGSTF1) that are highly upregulated by arsenic and are necessary for arsenic tolerance, as demonstrated by RNAi...
April 24, 2019: Current Biology: CB
Yifat Eliezer, Noa Deshe, Lihi Hoch, Shachar Iwanir, Christian O Pritz, Alon Zaslaver
Organisms' capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C. elegans nematodes, we demonstrate that odor-evoked retrieval of aversive memories induces rapid and protective stress responses, which increase animal survival prospects when facing imminent adversities. The underlying mechanism relies on two sensory neurons: one is necessary during the learning period, and the other is necessary and sufficient for memory retrieval...
April 22, 2019: Current Biology: CB
Ethan G McBride, Su-Yee J Lee, Edward M Callaway
Sensory selection and movement locally and globally modulate neural responses in seemingly similar ways. For example, locomotion enhances visual responses in mouse primary visual cortex (V1), resembling the effects of spatial attention on primate visual cortical activity. However, interactions between these local and global mechanisms and the resulting effects on perceptual behavior remain largely unknown. Here, we describe a novel mouse visual spatial selection task in which animals either monitor one of two locations for a contrast change ("selective mice") or monitor both ("non-selective mice") and can run at will...
April 22, 2019: Current Biology: CB
Tim N Enke, Manoshi S Datta, Julia Schwartzman, Nathan Cermak, Désirée Schmitz, Julien Barrere, Alberto Pascual-García, Otto X Cordero
Understanding the principles that govern the assembly of microbial communities across earth's biomes is a major challenge in modern microbial ecology. This pursuit is complicated by the difficulties of mapping functional roles and interactions onto communities with immense taxonomic diversity and of identifying the scale at which microbes interact [1]. To address this challenge, here, we focused on the bacterial communities that colonize and degrade particulate organic matter in the ocean [2-4]. We show that the assembly of these communities can be simplified as a linear combination of functional modules...
April 22, 2019: Current Biology: CB
Patrick J Lariviere, Christopher R Mahone, Gustavo Santiago-Collazo, Matthew Howell, Allison K Daitch, Rilee Zeinert, Peter Chien, Pamela J B Brown, Erin D Goley
Bacterial growth and division require insertion of new peptidoglycan (PG) into the existing cell wall by PG synthase enzymes. Emerging evidence suggests that many PG synthases require activation to function; however, it is unclear how activation of division-specific PG synthases occurs. The FtsZ cytoskeleton has been implicated as a regulator of PG synthesis during division, but the mechanisms through which it acts are unknown. Here, we show that FzlA, an FtsZ-binding protein and essential regulator of constriction in Caulobacter crescentus, helps link FtsZ to PG synthesis to promote division...
April 22, 2019: Current Biology: CB
Stefano Zucca, Valentina Pasquale, Pedro Lagomarsino de Leon Roig, Stefano Panzeri, Tommaso Fellin
Up and down states are among the most prominent features of the thalamo-cortical system during non-rapid eye movement (NREM) sleep and many forms of anesthesia. Cortical interneurons, including parvalbumin (PV) cells, display firing activity during cortical down states, and this GABAergic signaling is associated with prolonged down-state durations. However, what drives PV interneurons to fire during down states remains unclear. We here tested the hypothesis that background thalamic activity may lead to suprathreshold activation of PV cells during down states...
April 19, 2019: Current Biology: CB
Arturo D'Angelo, Kai Dierkes, Carlo Carolis, Guillaume Salbreux, Jérôme Solon
During development, cell-generated forces induce tissue-scale deformations to shape the organism [1,2]. The pattern and extent of these deformations depend not solely on the temporal and spatial profile of the generated force fields but also on the mechanical properties of the tissues that the forces act on. It is thus conceivable that, much like the cell-generated forces, the mechanical properties of tissues are modulated during development in order to drive morphogenesis toward specific developmental endpoints...
April 19, 2019: Current Biology: CB
Scott Hayes, Chrysoula K Pantazopoulou, Kasper van Gelderen, Emilie Reinen, Adrian Louis Tween, Ashutosh Sharma, Michel de Vries, Salomé Prat, Robert C Schuurink, Christa Testerink, Ronald Pierik
Global food production is set to keep increasing despite a predicted decrease in total arable land [1]. To achieve higher production, denser planting will be required on increasingly degraded soils. When grown in dense stands, crops elongate and raise their leaves in an effort to reach sunlight, a process termed shade avoidance [2]. Shade is perceived by a reduction in the ratio of red (R) to far-red (FR) light and results in the stabilization of a class of transcription factors known as PHYTOCHROME INTERACTING FACTORS (PIFs) [3, 4]...
April 18, 2019: Current Biology: CB
Matthias Meier, Alexander Borst
A neuron is conventionally regarded as a single processing unit. It receives input from one or several presynaptic cells, transforms these signals, and transmits one output signal to its postsynaptic partners. Exceptions exist: amacrine cells in the mammalian retina [1-3] or interneurons in the locust mesothoracic ganglion [4] are thought to represent many electrically isolated microcircuits within one neuron. An extreme case of such an amacrine cell has recently been described in the Drosophila visual system...
April 18, 2019: Current Biology: CB
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"