Journal Article
Review
Add like
Add dislike
Add to saved papers

P2X3 receptors are transducers of sensory signals.

Peripheral stimuli are transduced by specific receptors expressed by sensory neurons and are further processed in the dorsal horn of spinal cord before to be transmitted to the brain. While relative few receptor subtypes mediate the initial depolarisation of sensory neurons, an impressive number of molecules and ion channels integrate these inputs into coded signals. Soluble mediators and ambient conditions further shape these processes, potentially triggering peripheral and central sensitisation, or sensory downregulation. Extracellular ATP is a major signaling molecule that acts via purinergic receptors and is a powerful modulator of cell communication as well as a neurotransmitter at peripheral/central synapses. In particular, ATP-mediated signals are transduced by P2X3 receptors expressed mainly by peripheral sensory neurons. Recent evidence suggests that P2X3 receptor function not only induces neuron depolarisation and firing with consequent neurotransmitter release, but it also triggers intracellular molecular changes that amplify purinergic signaling with important consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app