Add like
Add dislike
Add to saved papers

Interaction of Treponema pallidum, the syphilis spirochete, with human platelets.

Extracellular bacteria that spread via the vasculature employ invasive mechanisms that mirror those of metastatic tumor cells, including intravasation into the bloodstream and survival during hematogenous dissemination, arrestation despite blood flow, and extravasation into distant tissue sites. Several invasive bacteria have been shown to exploit normal platelet function during infection. Due to their inherent ability to interact with and influence other cell types, platelets play a critical role in alteration of endothelial barrier permeability, and their role in cancer metastasis has been well established. The highly invasive bacterium and causative agent of syphilis, Treponema pallidum subspecies pallidum, readily crosses the endothelial, blood-brain and placental barriers. However, the mechanisms underlying this unusual and important aspect of T. pallidum pathogenesis are incompletely understood. In this study we use darkfield microscopy in combination with flow cytometry to establish that T. pallidum interacts with platelets. We also investigate the dynamics of this interaction and show T. pallidum is able to activate platelets and preferentially interacts with activated platelets. Platelet-interacting treponemes consistently exhibit altered kinematic (movement) parameters compared to free treponemes, and T. pallidum-platelet interactions are reversible. This study provides insight into host cell interactions at play during T. pallidum infection and suggests that T. pallidum may exploit platelet function to aid in establishment of disseminated infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app