Add like
Add dislike
Add to saved papers

Bone structure is largely unchanged in growing male CD-1 mice fed lower levels of vitamin D and calcium than in the AIN-93G diet.

Bone Reports 2019 June
Background: Calcium (Ca) and vitamin D (vit D) in the AIN-93G diet may be higher than required for healthy bone development, and mask the potential benefit of a dietary intervention.

Objective: The objective was to determine if lower levels of Ca and vit D than is present in the AIN-93G diet supports bone development in growing male CD-1 mice.

Methods: Weanling male CD-1 mice were randomized to modified AIN-93G diets containing either 100 (Trial 1) or 400 (Trial 2) IU vit D/kg diet within one of two or three Ca levels (0.35, 0.30, or 0.25% Ca diet in Trial 1 or 0.35% or 0.25% in Trial 2) or the AIN-93G diet (1000 IU/kg vit D and 0.5% Ca) from weaning to 4 months of age (n = 13-15/group). At 2 and 4 months of age, BMD and structural properties of the tibia were analyzed in vivo. Structure of lumbar vertebra 4 (L4) and mandible, and femur strength were assessed ex vivo at age 4 months.

Results: There were no differences in tibia, L4, and mandible structure between the AIN-93G diet and the 0.35% Ca groups at either vit D level. A few structure outcomes were compromised with the 0.25 and/or 0.3% Ca diets but there were no differences in femur biomechanical strength compared to AIN-93G group in either Trial.

Conclusion: At 400 or 100 IU vit D/kg diet, Ca can be lowered to 0.35% without detriment to BMD or bone structure while bone strength is not altered at lower Ca (0.25%) compared to CD-1 mice fed AIN-93G diet. Because of genetic variation in CD-1 mice among different breeding facilities, results in CD-1 mice from other facilities may differ from the present study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app