Add like
Add dislike
Add to saved papers

Hindmarsh-Rose neuron model with memristors.

Bio Systems 2019 January 10
We analyze single and coupled Hindmarsh-Rose neurons in the presence of a time varying electromagnetic field which results from the exchange of ions across the membrane. Memristors are used to model the relation between magnetic flux of the electromagnetic field and the membrane potential of interacting neurons. The bifurcation analysis of Hindmarsh-Rose neurons has been carried out by varying the modulation intensity of induced current on the membrane potential. Many important dynamical behaviors such as synchrony, desynchrony, amplitude death, anti-phase oscillations, coexistence of resting and spiking state, and near death rare spikes are observed when the neurons are coupled using electrical and chemical synapses. In all cases the transverse Lyapunov exponents are plotted to observe the point of transition from desynchrony to synchrony. The memristor based analysis on neural networks can contribute to biological system modeling and can be used as a synapse in hardware of artificial neural networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app