Add like
Add dislike
Add to saved papers

Hypoxia-Irrelevant Photonic Thermodynamic Cancer Nanomedicine.

ACS Nano 2019 January 10
The hypoxic tumor microenvironment severely lowers the therapeutic efficacy of oxygen-dependent anticancer modalities because tumor hypoxia hinders the generation of toxic reactive oxygen species. Here we report a thermodynamic cancer-therapeutic modality that employs oxygen-irrelevant free radicals generated from thermo-labile initiators for inducing cancer-cell death. Free radical nanogenerator was engineered via direct growth of mesoporous silica layer onto the surface of two-dimensional Nb2C MXene nanosheets towards multifunctionality, where the mesopore provided the reservoirs for initiators and MXene core acted as the photonic-thermal trigger at near infrared-II biowindow (NIR-II). Upon illumination by a 1064 nm NIR-II laser, the photothermal-conversion effect of Nb2C MXene induced the fast release and quick decomposition of the encapsulated initiators (AIPH) to produce free radicals, which promoted cancer-cell apoptosis in both normoxic and hypoxic microenvironment. Systematic in vitro and in vivo evaluations have demonstrated the synergistic-therapeutic outcome of this intriguing photonic nanoplatform-enabled thermodynamic cancer therapy for completely eradicating the tumors without recurrence by NIR-II laser irradiation. This work pioneers the thermodynamic therapy for oxygen-independent cancer treatment by photonic triggering at NIR-II biowindow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app