Add like
Add dislike
Add to saved papers

Determination of Expression Patterns of Seven De-sumoylation Enzymes in Major Ocular Cell Lines.

Accumulated evidence have well established that protein sumoylation plays multiple roles in various cellular processes. In the vertebrate eye, we and others have demonstrated that sumoylation displays indispensable roles in regulating eye development. Various ocular cell lines including human embryonic cell line (FHL124), the SV40-large T-transformed human lens epithelial cell line (HLE), the SV40-large T-transformed mouse lens epithelial cell line (αTN4-1), the rabbit lens epithelial cell line (N/N1003A) and the human retina pigment epithelial cell line (ARPE-19) have been extensively used for studying various cellular functions and disease processes including sumoylation functions, and mechanisms for cataract and age-related macular degeneration (AMD). However, the sumoylation enzyme systems have not been well established. In this study, using QRT-PCR and western blot analysis, we have determined the expression patterns of seven de-sumoylation enzymes (SENP1, 2, 3, 5, 6, 7 and 8) in the above 5 major ocular cell lines, and the obtained results help to establish the basis for the future study of sumoylation functions and mechanisms in vertebrate eye.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app