Add like
Add dislike
Add to saved papers

Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration.

Bone-marrow-derived mesenchymal stem cells possess great potential for tissue engineering and regenerative medicine. In the work, an injectable BMSCs-laden hydrogel system was formed by enzyme-catalyzed crosslinking of hyaluronic acid-tyramine and chondroitin sulfate-tyramine in the presence of hydrogen peroxide and horseradish peroxidase, which was used as a 3D scaffold to explore the behavior of the mesenchymal stem cells. Afterward, the gelation rate, mechanical properties, as well as the degradation process of the scaffold were well characterized and optimized. Furthermore, bone morphogenetic protein-2 was encapsulated in the scaffold, which was used to improve the osteogenic properties. The results illustrated that such a BMSCs-laden hydrogel not only offered a proper microenvironment for the adhesion, proliferation and differentiation of mesenchymal stem cells in vitro, but also promoted bone regeneration in vivo. Therefore, this injectable BMSCs-laden hydrogel may serve as an efficient 3D scaffold for bone repair and regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app