Add like
Add dislike
Add to saved papers

Anti-ICAM-1 antibody-modified nanostructured lipid carriers: a pulmonary vascular endothelium-targeted device for acute lung injury therapy.

BACKGROUND: Acute lung injury (ALI) is a life-threatening clinical syndrome without effective treatment. Targeting delivery of glucocorticoid to lung shows potential efficacy for ALI based on their anti-inflammatory and anti-fibrotic properties, breaking through their clinical application limitation due to systemic side effects. This work was aimed to establish lung-targeted dexamethasone (DEX) loaded nanostructured lipid carriers (NLCs) with opposite surface charge and investigate their therapeutic effects on lipopolysaccharide (LPS)-induced ALI mice.

RESULTS: The diameter of anionic anti-intercellular adhesion molecule 1 (anti-ICAM-1) antibody-conjugated DEX-loaded NLCs (ICAM/DEX/NLCs) and the cationic ones with octadecylamine (ODA) modification (ICAM/DEX/ODA-NLCs) was about 249.9 and 235.9 nm. The zeta potential of ICAM/DEX/NLCs and ICAM/DEX/ODA-NLCs was about - 30.3 and 37.4 mV, respectively. Relative to the non-targeted control and ICAM/DEX/ODA-NLCs, ICAM/DEX/NLCs exhibited higher in vitro cellular uptake in LPS-activated human vascular endothelial cell line EAhy926 after CAM-mediated endocytosis, and stronger in vivo pulmonary distribution in the ALI model mice. In vivo i.v. administration of ICAM/DEX/NLCs significantly attenuated pulmonary inflammatory cells infiltration, and the production of pro-inflammatory cytokine TNF-α and IL-6 in ALI mice. H&E stain also revealed positive histological improvements by ICAM/DEX/NLCs.

CONCLUSIONS: ICAM/DEX/NLCs may represent a potential pulmonary endothelium targeted device, which facilitate translation of DEX into clinical ALI treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app