Add like
Add dislike
Add to saved papers

Heat stress decreased hair follicle population in rex rabbits.

The aim of this study was conducted to investigate the effect of heat stress on the hair follicle population and related signalling pathways in rex rabbits. Forty-eight rabbits were randomly divided into two groups: one group in a high ambient environment (32 ± 2°C, heat stress) and the other group with normal temperature (20 ± 2°C, control). The results show that heat stress decreased the body weight gain and feed conversion rate, rabbit hair length and hair follicle density (p < 0.05). Besides, heat stress suppressed the gene expression of noggin, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor and protein expression of phosphorylated mechanistic target of rapamycin (mTOR) in rabbit skin (p < 0.05), while stimulated significantly the gene expression of bone morphogenetic protein 2 (BMP2) and BMP4 (p < 0.05). Heat exposure did not alter significantly the gene expression of alkaline phosphatase, versican and hepatocyte growth factor compared with the control (p > 0.05). In conclusion, noggin-BMP, IGF-1 and mTOR signalling pathways may be associated with the process of heat stress-repressing hair follicle development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app