Add like
Add dislike
Add to saved papers

Attenuation of Atherosclerosis by Protocatechuic Acid via Inhibition of M1 and Promotion of M2 Macrophage Polarization.

Macrophage polarization has a vital impact on the progression of atherosclerosis (AS). Protocatechuic acid (PCA), a flavonol, displays notable atheroprotective effects, but its mechanisms have not been clearly defined. We investigated whether PCA attenuated AS by regulating macrophage polarization. PCA consumption inhibited HCD-induced plaque formation (17.84 and 8.21% in the HCD and HCD with PCA groups, respectively, p < 0.05) and inflammatory responses in apolipoprotein E deficient (ApoE-/- ) mice. Moreover, PCA suppressed classically activated macrophage (M1) polarization, which decreased the secretion of nitric oxide synthase (54.63 and 32.86% in the HCD and HCD with PCA groups, respectively, p < 0.05) and proinflammatory factors. PCA promoted alternatively activated macrophage (M2) activation, which increased the expression of arginine I (6.97 and 26.19% in the HCD and HCD with PCA groups, respectively, p < 0.001) and anti-inflammatory factors. PCA also regulated M1-M2 polarization in J774 cells and mouse-bone-marrow-derived macrophages. Finally, PCA reduced PI3K-Akt-mediated nuclear-factor-κB activation, thereby suppressing M1 polarization, and provoked signal-transducers-and-activators-of-transcription-6 phosphorylation and peroxisome-proliferator-activated-receptor-γ activation, leading to enhanced M2 activation. Our data revealed that PCA alleviated AS by regulating M1-M2 conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app