Add like
Add dislike
Add to saved papers

Superoxide anions modulate the performance of apelin in the paraventricular nucleus on sympathetic activity and blood pressure in spontaneously hypertensive rats.

Peptides 2018 December 22
The present study was designed to determine how apelin in paraventricular nucleus (PVN) modulates the renal sympathetic nerve activity (RSNA), arterial blood pressure (ABP), mean arterial pressure (MAP), and heart rate (HR), and whether superoxide anions regulate the performance of PVN apelin in spontaneously hypertensive rats (SHRs). Acute experiment was carried out with 13-week-old male Wistar-Kyoto rats (WKY) and SHRs under anaesthesia. RSNA, ABP, MAP and HR after PVN microinjection were measured. Apelin microinjection into PVN increased RSNA, ABP, MAP and HR in WKY rats and SHRs, more obviously in SHRs. APJ antagonist F13 A decreased the RSNA, ABP, MAP and HR in SHRs, and inhibited the effects of apelin. Apelin and APJ mRNA levels were higher in the PVN in SHRs. PVN microinjection of superoxide anion scavengers tempol and tiron, or NAD(P)H oxidase inhibitor apocynin, decreased the RSNA, ABP, MAP and HR in SHRs, and inhibited the effects of apelin, but the superoxide dismutase (SOD) inhibitor diethyldithiocarbamic acid (DETC) potentiated the effects of apelin. NAD(P)H oxidase activity and superoxide anion levels in PVN were increased by apelin, but decreased by APJ antagonist F13 A. The apelin-induced increases in NAD(P)H oxidase activity and superoxide anion level were abolished by pre-treatment with F13 A. These results indicate that apelin in PVN increases the sympathetic outflow and blood pressure via activating APJ receptor. The enhanced activity of endogenous apelin and APJ receptor in PVN contributes to sympathetic activation in hypertension, and the superoxide anion is involved in these apelin-mediated processes in PVN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app