Add like
Add dislike
Add to saved papers

BDSF Is the Predominant In-Planta Quorum-Sensing Signal Used During Xanthomonas campestris Infection and Pathogenesis in Chinese Cabbage.

Xanthomonas campestris pv. campestris uses the diffusible signal factor (DSF) family of quorum-sensing (QS) signals to coordinate virulence and adaptation. DSF family signals have been well-characterized using laboratory-based cell cultures. The in-planta QS signal used during X. campestris pv. campestris infection remains unclear. To achieve this goal, we first mimic in-planta X. campestris pv. campestris growth conditions by supplementing the previously developed XYS medium with cabbage hydrolysate and found that the dominant signal produced in these conditions was BDSF. Secondly, by using XYS medium supplemented with diverse plant-derived compounds, we examined the effects of diverse plant-derived compounds on the biosynthesis of DSF family signals. Several compounds were found to promote biosynthesis of BDSF. Finally, using an X. campestris pv. campestris ΔrpfB-Chinese cabbage infection model and an ultra-performance liquid chromatographic-time of flight-mass spectrometry-based assay, BDSF was found to comprise >70% of the DSF family signals present in infected cabbage tissue. BDSF at a concentration of 2.0 μM induced both protease activity and engXCA expression. This is the first report to directly show that BDSF is the predominant in-planta QS signal used during X. campestris pv. campestris infection. It provides a better understanding of the molecular interactions between X. campestris pv. campestris and its cruciferous hosts and also provides the logical target for designing strategies to counteract BDSF signaling and, thus, infection. Further studies are needed to get an exact idea about the DSF production dynamics of the wild-type strain inside the plant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app