Add like
Add dislike
Add to saved papers

Methylation of p16 ink4a promoter is independent of human papillomavirus DNA physical state: a comparison between cervical pre-neoplastic and neoplastic samples.

BACKGROUND Epigenetic modifications in host cells, like p16 ink4a methylation, have been considered as putative complementary mechanisms for cancer development. Because only a small proportion of infected women develop cervical cancer, other factors might be involved in carcinogenesis, either independently or in association with high-risk human papillomavirus (HR-HPV) infections, including epigenetic factors. OBJECTIVES We hypothesised that p16 ink4a methylation might have a role in cancer development driven by HPV16, mainly in the presence of intact E1/E2 genes. Thus, our objectives were to assess the status of p16 ink4a methylation and the HPV16 E1/E2 integrity in samples in different stages of cervical diseases. METHODS Presence of HPV16 was determined by E6 type-specific polymerase chain reaction (PCR). Methylation status of the p16 ink4a promoter was assessed by methylation-specific PCR in 87 cervical specimens comprising 29 low-grade (LSIL), 41 high-grade (HSIL) lesions, and 17 cervical cancers (CC). Characterisation of E1 and E2 disruption (as an indirect indicator of the presence of episomal viral DNA) was performed by PCR amplifications. FINDINGS We observed a significantly increased trend (nptrend = 0.0320) in the proportion of methylated p16 ink4a in cervical samples during cancer development. Concomitant E1 and E2 disruptions were the most frequent pattern found in all groups: CC (76%), HSIL (54%), and LSIL (73%). No statistically significant differences between p16 ink4a methylation and E1/E2 integrity, in histological groups, was observed. MAIN CONCLUSIONS There was an increase in methylation of the p16 ink4a promoter from pre-neoplastic lesions to cancer. Additionally, a high frequency of E1/E2 disruptions in LSIL/HSIL suggested that viral DNA integration was an early event in cervical disease. Moreover, the methylation status was apparently independent of HPV16 integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app