Add like
Add dislike
Add to saved papers

Dopamine D 3 R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects.

Neuropsychopharmacology 2018 November 28
Prescription opioids such as oxycodone are highly effective analgesics for clinical pain management, but their misuse and abuse have led to the current opioid epidemic in the United States. In order to ameliorate this public health crisis, the development of effective pharmacotherapies for the prevention and treatment of opioid abuse and addiction is essential and urgently required. In this study, we evaluated-in laboratory rats-the potential utility of VK4-116, a novel and highly selective dopamine D3 receptor (D3R) antagonist, for the prevention and treatment of prescription opioid use disorders. Pretreatment with VK4-116 (5-25 mg/kg, i.p.) dose-dependently inhibited the acquisition and maintenance of oxycodone self-administration. VK4-116 also lowered the break-point (BP) for oxycodone self-administration under a progressive-ratio schedule of reinforcement, shifted the oxycodone dose-response curve downward, and inhibited oxycodone extinction responding and reinstatement of oxycodone-seeking behavior. In addition, VK4-116 pretreatment dose-dependently enhanced the antinociceptive effects of oxycodone and reduced naloxone-precipitated conditioned place aversion in rats chronically treated with oxycodone. In contrast, VK4-116 had little effect on oral sucrose self-administration. Taken together, these findings indicate a central role for D3Rs in opioid reward and support further development of VK4-116 as an effective agent for mitigating the development of opioid addiction, reducing the severity of withdrawal and preventing relapse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app