Add like
Add dislike
Add to saved papers

The Effect of Different Treatments of (-)-Epigallocatechin-3-Gallate on Colorectal Carcinoma Cell Lines.

Nutrition and Cancer 2018 December 5
Backgroud: (-)-Epigallocatechin-3-gallate (EGCG), the major component of green tea, is well documented to induce apoptosis and cell cycle arrest in cancer by targeting multiple signal transduction pathways. However, EGCG is extremely unstable in general culture conditions and rapidly degraded. So, to what extent EGCG or which degradation products of EGCG play a role in anti-tumor is still unknown. In this study, we evaluated the effect of different treatments of EGCG on HCT116 cells.

DESIGN: MTT assay was applied to evaluated the inhibitory effect of different treatments of EGCG on HCT116 cells. Cell cycle and apoptosis were performed by flow cytometry. Finally, western blot analysis was used to elucidate the molecular mechanism associated with cell cycle arrest and apoptosis.

RESULTS: Compared with control, both EGCG and O-EGCG (i.e., EGCG being pre-incubated at 37°C for 3 h) significantly inhibited HCT116 cells growth. Surprisingly, we found that the inhibitory effect of O-EGCG was stronger than that of EGCG. The IC50 values of EGCG and O-EGCG were 8.75 and 5.40 μM, respectively. Cell cycle analysis showed that 20 μM of EGCG simultaneously caused cell cycle arrest at G1 and G2 phase in HCT116 cells, differing from O-EGCG which exclusively caused cell cycle arrest at G2. This result suggested that parent EGCG at the early treatment might cause cell cycle arrest at G1. As time went on, EGCG disappeared and degraded products of EGCG were formed which might cause cell cycle arrest at G2. Further studies revealed that EGCG induced cell cycle arrest at G1 by downregulation of cyclin E and cyclin D1 and upregulation of p21. On the other hand, O-EGCG induced HCT116 cells apoptosis mainly by increasing the expression of p53 and cleaved caspase-3, which might be the underlying reason why O-EGCG had stronger inhibitory effect on HCT116 cells line than EGCG.

CONCLUSIONS: The pretreatment of EGCG may be an effective way to enhance its antitumor effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app