Comment
Journal Article
Add like
Add dislike
Add to saved papers

Unique Biology and Single-Channel Properties of GluN2A- and GluN2C-Containing Triheteromeric N-Methyl-D-Aspartate Receptors.

Triheteromeric N-methyl-D-aspartate receptors (NMDARs) are assemblies of two different types of GluN2 subunits that endow receptors with properties distinct from their diheteromeric counterparts. Previous studies show an abundance of triheteromeric NMDARs across the central nervous system (CNS), making them an important receptor population to investigate and potential drug target. A recent study by Bhattacharya et al. (1) demonstrated the prevalence of GluN1/GluN2A/GluN2C triheteromeric NMDARs in cerebellar granule cells (CGCs), (2) suggested that GluN2C subunits seldom express as diheteromers, (3) suggested that GluN2A subunits are the preferred partners for GluN2C to functionally express at the cell surface, and (4) revealed unique single-channel properties of these triheteromeric assemblies, which may enable these cells to perform unique tasks. Taken together, this work demonstrates the physiological existence of GluN1/GluN2A/GluN2C receptors in the CGCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app