Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing.

Cellular Signalling 2019 Februrary
Bioluminescence resonance energy transfer (BRET) is a versatile tool used to investigate membrane receptor signalling and function. We have recently developed a homogenous NanoBRET ligand binding assay to monitor interactions between G protein-coupled receptors and fluorescent ligands. However, this assay requires the exogenous expression of a receptor fused to the nanoluciferase (Nluc) and is thus not applicable to natively-expressed receptors. To overcome this limitation in HEK293 cells, we have utilised CRISPR/Cas9 genome engineering to insert Nluc in-frame with the endogenous ADORA2B locus this resulted in HEK293 cells expressing adenosine A2B receptors under endogenous promotion tagged on their N-terminus with Nluc. As expected, we found relatively low levels of endogenous (gene-edited) Nluc/A2B receptor expression compared to cells transiently transfected with expression vectors coding for Nluc/A2B . However, in cells expressing gene-edited Nluc/A2B receptors we observed clear saturable ligand binding of a non-specific fluorescent adenosine receptor antagonist XAC-X-BY630 (Kd  = 21.4 nM). Additionally, at gene-edited Nluc/A2B receptors we derived pharmacological parameters of ligand binding; Kd as well as Kon and Koff for binding of XAC-X-BY630 by NanoBRET association kinetic binding assays. Lastly, cells expressing gene-edited Nluc/A2B were used to determine the pKi of unlabelled adenosine receptor ligands in competition ligand binding assays. Utilising CRISPR/Cas9 genome engineering here we show that NanoBRET ligand binding assays can be performed at gene-edited receptors under endogenous promotion in live cells, therefore overcoming a fundamental limitation of NanoBRET ligand assays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app