Add like
Add dislike
Add to saved papers

ShRNA-mediated BMI-1 gene silencing inhibits gastrointestinal stromal tumor cell telomerase activity and enhances apoptosis.

Gastrointestinal stromal tumors (GISTs) are the most frequently occurring mesenchymal tumors of the gastrointestinal tract. Telomerase activity is well acknowledged as a critical factor in oncogenesis. The objective of the present study is to evaluate the effect of BMI gene silencing on proliferation, apoptosis and telomerase activity in human GIST882 cells. GIST882 cells were transfected with a eukaryotic expression vector of an shRNA fragment. The silencing efficiency in the GIST882 cells was determined by RT-qPCR and a western blot analysis. After the shRNA-BMI-1 plasmid was transfected into the GIST882 cells and nude mice, a cell counting kit-8 (CCK-8) assay and flow cytometry were utilized to detect the GIST882 cell proliferation, the apoptosis rate and the cell cycle. Tumor growth was observed by tumor xenograft in nude mice. Telomerase activity and telomere length were detected by a Southern blot and a target region amplified polymorphism. The shRNA-BMI-1 recombinant plasmid was successfully constructed. The mRNA and protein expression of the BMI-1 gene in GIST882 cells was suppressed by the shRNA-BMI-1 recombinant plasmid. Meanwhile, BMI-1 gene silencing inhibited the cell proliferation, tumor growth, and cell cycle in the GIST882 cells. However, cell apoptosis was increased and telomerase activity was decreased with the silencing of the BMI-1 gene. Collectively, the results of this study suggest that silencing the BMI-1 gene may provide a new target for the treatment of GISTs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app