Add like
Add dislike
Add to saved papers

Melatonin activates BK Ca channels in cerebral artery myocytes via both direct and MT receptor/PKC-mediated pathway.

The pineal hormone melatonin is a neuroendocrine hormone with high membrane permeability that is involved in regulation of circadian rhythm of several biological functions. Large-conductance Ca2+ -activated K+ (BKCa ) channels are abundantly expressed in vascular smooth muscle cells and play an important role in vascular tone regulation. We investigated the mechanisms through which myocyte BKCa channels mediate effects of melatonin on cerebral arteries (CAs). Arterial contractility measurements showed that melatonin alone did not change vascular tone in CAs; however, it induced concentration-dependent vasodilation of phenylephrine-induced contraction in CAs. In the presence of the potent endothelial oxide synthase inhibitor, Nω -nitro-L-arginine methyl ester, melatonin-elicited relaxation was significantly inhibited by iberiotoxin (BKCa channel blocker). Melatonin significantly increased BKCa currents but not voltage-gated K+ (KV ) currents in whole-cell recordings. Melatonin decreased the amplitude of Ca2+ sparks and spontaneous transient outward currents (STOCs), however, a significant increase in open probability of BKCa channels was observed in both inside-out and cell-attached patch-clamp recordings. This melatonin-induced enhancement of BKCa channel activity was significantly suppressed by luzindole (melatonin MT1 /MT2 receptor inhibitor), U73122 (phospholipase C (PLC) inhibitor), and Ro31-8220 (protein kinase C (PKC) inhibitor). Melatonin had no significant effects on sarcoplasmic reticulum release of Ca2+ . These findings indicate that melatonin-induced vasorelaxation of CAs is partially attributable to direct (passing through the cell membrane) and indirect (via melatonin MT1 /MT2 receptors-PLC-PKC pathway) activation of BKCa channels on CA myocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app