Add like
Add dislike
Add to saved papers

Acceleration-induced pressure gradients and cavitation in soft biomaterials.

Scientific Reports 2018 October 27
The transient, dynamic response of soft materials to mechanical impact has become increasingly relevant due to the emergence of numerous biomedical applications, e.g., accurate assessment of blunt injuries to the human body. Despite these important implications, acceleration-induced pressure gradients in soft materials during impact and the corresponding material response, from small deformations to sudden bubble bursts, are not fully understood. Both through experiments and theoretical analyses, we empirically show, using collagen and agarose model systems, that the local pressure in a soft sample is proportional to the square of the sample depth in the impact direction. The critical acceleration that corresponds to bubble bursts increases with increasing gel stiffness. Bubble bursts are also highly sensitive to the initial bubble size, e.g., bubble bursts can occur only when the initial bubble diameter is smaller than a critical size (≈10 μm). Our study gives fundamental insight into the physics of injury mechanisms, from blunt trauma to cavitation-induced brain injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app