Add like
Add dislike
Add to saved papers

Identification of SMAD3 as a Novel Mediator of Inflammation in Human Myometrium In Vitro .

Preterm birth remains the primary cause of early neonatal death and is a major determinant for long-term health consequences. Aberrant intrauterine inflammation and infection are known to augment the synthesis of proinflammatory cytokines and induce uterine contractions, which can subsequently lead to preterm birth. The transforming growth factor- β (TGF- β ) superfamily members regulate numerous cellular processes through the activation of intracellular mediators known as mothers against decapentaplegic homolog (SMADs). Studies in nongestational tissues have shown that SMAD3 plays a role in immune regulation and inflammation; however, its role in human labour remains unknown. Thus, the present study aimed at (i) characterising the expression of SMAD3 in the human myometrium; (ii) determining the effect of bacterial and viral products and proinflammatory cytokines on SMAD3 transcriptional activity in primary human myometrial cells; and (iii) investigating the effect of SMAD3 siRNA knockdown on the production of prolabour mediators in primary human myometrial cells. Phosphorylated (i.e., active) SMAD3 protein expression was lower in the myometrium after spontaneous term labour compared to the myometrium from nonlabouring women. Using a luciferase assay, the proinflammatory cytokines IL-1 β and TNF, and viral analogue polyinosinic : polycytidylic acid (poly(I : C)) significantly reduced SMAD3 transcriptional activity in human primary myometrial cells. Loss-of-function studies found that SMAD3 knockdown in myometrial cells significantly increased IL-1 β - and poly(I : C)-induced proinflammatory cytokines (IL-1A, IL-6), chemokines (IL-8, MCP-1), the adhesion molecule ICAM-1, COX-2 mRNA expression, and subsequent PGF2 α release. In conclusion, SMAD3 deficiency is associated with increased production of proinflammatory and prolabour mediators in the human myometrium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app