Add like
Add dislike
Add to saved papers

Influence of Heat Events on the Composition of Airborne Bacterial Communities in Urban Ecosystems.

Airborne bacteria are significantly affected by meteorological and environmental conditions. However, there is little quantitative data available on the effects of these factors on airborne bacteria in urban ecosystems. In the present study, we analyzed weather-dependent changes in the composition of airborne bacterial communities using high throughput sequencing. Samples were collected before and after a period of constant hot weather at four selected sampling sites (YRBS, ZJGUSJC, TJCR, and BLQG) in Hangzhou. Our results show that the average amount of bacterial 16S rRNA gene copy numbers per m³ of air decreased significantly after constant high temperature. In addition, the number of operational taxonomic units and the Shannon⁻Wiener diversity indexes of the samples at all four selected sampling sites were significantly decreased after the heat event, showing notable impact on bacterial diversity. We also detected a significant increase in the abundances of spore-forming bacteria. Firmicutes increased from 3.7% to 9.9%, Bacillales increased from 2.6% to 7.6%, and Bacillaceae increased from 1.5% to 5.9%. In addition, we observed an increase in beta-Proteobacteria (18.2% to 50.3%), Rhodocyclaceae (6.9% to 29.9%), and Burkholderiaceae (8.1% to 15.2%). On the other hand, the abundance of alpha-Proteobacteria (39.6% to 9.8%), Caulobacteraceae (17.9% to 0.5%), Sphingomonadaceae (7.2% to 3.3%), and Xanthomonadaceae (3.0% to 0.5%) was significantly lower. Taken together, our data suggest that the composition of airborne bacterial communities varies greatly dependent on heat events, and that such communities include several species that are highly susceptible to high-temperature related stressors such as high air temperature, low relative humidity, and high intensity of solar radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app