Add like
Add dislike
Add to saved papers

Urinary metals and metal mixtures in Bangladesh: Exploring environmental sources in the Health Effects of Arsenic Longitudinal Study (HEALS).

INTRODUCTION: Environmental exposure to toxic metals and metalloids is pervasive and occurs from multiple sources. The Health Effects of Arsenic Longitudinal Study (HEALS) is an ongoing prospective study predominantly focused on understanding health effects associated with arsenic exposure from drinking water. The goal of this project was to measure a suite of elements in urine to better understand potential exposure patterns and to identify common environmental sources of exposure among this semi-rural Bangladeshi population.

METHODS: In a random sample of 199 adult HEALS participants (50% female), the concentrations of 15 urinary elements (As, Ba, Cd, Co, Cs, Cu, Mn, Mo, Ni, Pb, Se, Sr, Tl, W, Zn) were assessed by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) to assess commonalities with sociodemographic characteristics and potential sources of exposure. We used principal component analysis (PCA) with varimax normalized rotations, and hierarchical cluster analysis (CA), using Ward's method with Euclidean distances, to evaluate these relationships.

RESULTS: PCA and CA showed similar patterns, suggesting 6 principal components (PC) and 5 clusters: 1)PC: Sr-Ni-Cs/ CA: Sr-Ni-Co; 2) Pb-Tl/Pb-Tl-Se-Cs; 3) As-Mo-W/As-Mo-W; 4) Ba-Mn/Ba-Mn; 5) Cu-Zn/Cu-Zn-Cd; and 6) Cd. There was a strong significant association between the As-Mo-W PC/cluster and water arsenic levels (p < 0.001) and between the Cd PC and betel nut use (p = 0.003). The Sr-Ni-Cs PC was not related to any of the socio-demographic characteristics investigated, including smoking status and occupation. The first PC, Sr-Ni-Cs, explained 21% of the variability; the third PC, As-Mo-W, explained 12.5% of the variability; and the sixth PC, Cd, explained 10% of the variability. Day laborers appeared to have the highest exposure.

CONCLUSIONS: Groundwater and betel nut use are likely important sources of metal and metalloid exposure in this population. These findings will guide future exposure assessment research in Bangladesh and future epidemiologic research investigating the degree to which metal mixtures play a role in disease development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app