Journal Article
Review
Add like
Add dislike
Add to saved papers

Candidate Biomarkers of Liver Fibrosis: A Concise, Pathophysiology-oriented Review.

Repair of sustained liver injury results in fibrosis (i.e. the accumulation of extracellular matrix proteins), and ultimately the complete distortion of parenchymal architecture of the liver, which we call cirrhosis. Detecting and staging of fibrosis is thus a mainstay in the management of chronic liver diseases, since many clinically relevant decisions, such as starting treatment and/or monitoring for complications including hepatocellular carcinoma, may depend on it. The gold standard for fibrosis staging is liver biopsy, the role of which, however, is questioned nowadays because of cost, hazards and poor acceptance by patients. On the other hand, imaging techniques and/or measurement of direct and indirect serum markers have not proved to be completely satisfactory under all circumstances as alternatives to liver biopsy. Making progress in this field is now more crucial than ever, since treatments for established fibrosis appear on the horizon. Fine dissection of the pathways involved in the pathophysiology of liver diseases has put forward several novel candidate biomarkers of liver fibrosis, such as growth arrest-specific6, Mac-2-binding protein, osteopontin, placental growth factor, growth/differentiation factor 15 and hepatocyte growth factor. All molecules have been suggested to have potential to complement or substitute methods currently used to stage liver diseases. Here, we review the pros and cons for their use in this setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app