Add like
Add dislike
Add to saved papers

Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1.

BACKGROUND: The oxidative pentose phosphate pathway (PPP) is essential for cancer metabolism and growth. However, the contribution of 6-phosphogluconate dehydrogenase (6PGD), a key enzyme of PPP, to cervical cancer development remains largely unknown.

METHODS: mRNA and protein levels of 6PGD were analyzed in cervical cancer cells and tissues derived from patients and compared to normal counterparts. Using cell culture system and xenograft mouse model, the functions of 6PGD in cervical cancer are determined and its molecular mechanism is analyzed. 6PGD inhibitor physcion and siRNA knockdown were used.

RESULTS: In this work, we demonstrate that 6PGD is aberrantly upregulated and activated in cervical cancer cells and patient tissues compared to normal counterparts. Using different approaches and preclinical models, we show that 6PGD inhibition decreases growth and migration, and enhances chemosensitivity in cervical cancer. Mechanistically, inhibition of 6PGD activates AMP-activated protein kinase (AMPK) and decreases RhoA and Rac1 activities. AMPK depletion significantly reduces the effects of 6PGD inhibition in decreasing RhoA and Rac1 activities, growth and migration in cervical cancer cells.

CONCLUSIONS: Our work is the first to demonstrate the aberrant expression of 6PGD and its predominant roles in cervical cancer cell growth and migration, via a AMPK-dependent activation. Our findings suggest 6PGD as a potential therapeutic target to enhance chemosensitivity in cervical cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app