Journal Article
Review
Add like
Add dislike
Add to saved papers

Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy.

The conventional chemotherapeutic agents, used for cancer chemotherapy, have major limitations including non-specificity, ubiquitous biodistribution, low concentration in tumor tissue, and systemic toxicity. In recent years, owing to their unique features, polymeric nanoparticles have been widely used for the target-specific delivery of drugs in the body. Although polymeric nanoparticles have addressed a number of important issues, the bioavailability of drugs at the disease site, and especially upon cellular internalization, remains a challenge. A polymer nanocarrier system with a stimuli-responsive property (e.g., pH, temperature, or redox potential), for example, would be amenable to address the intracellular delivery barriers by taking advantage of pH, temperature, or redox potentials. With a greater understanding of the difference between normal and pathological tissues, there is a highly promising role of stimuli-responsive nanocarriers for drug delivery in the future. In this review, we highlighted the recent advances in different types of stimuli-responsive polymers for drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app