Add like
Add dislike
Add to saved papers

The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity.

BACKGROUND: The therapeutic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) against cisplatin-induced nephrotoxicity has been reported, however, its efficacy in gonadotoxicity still has not been addressed. Herein, we investigated the effect of BM-MSCs in cisplatin-induced testicular toxicity and its underlying mechanism of action.

METHODS: Thirty male Sprague-Dawley rats were divided into a control group: injected with phosphate-buffered saline (PBS) intraperitoneal (ip), a cisplatin group: injected with a single dose of 7 mg/kg cisplatin ip to induce gonadotoxicity and a BM-MSCs group: received cisplatin ip followed by BM-MSCs injection 1 day after cisplatin. In testicular tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) levels were assessed. Additionally, gene expressions of inducible nitric oxide synthase (iNOS), caspase-3, and p38 mitogen-activated protein kinase (MAPK) were measured. The testicular tumor necrosis factor alpha (TNF-α) protein contents and Bcl-2 associated X protein (BAX) expression were determined. Histopathology of testicular tissues was examined.

RESULTS: Cisplatin injection showed a significant decrease in GSH and SOD testicular levels besides a significant increase of MDA and TNF-α testicular levels and upregulation of testicular gene expressions of iNOS, caspase-3, and p38-MAPK in comparison to the control group. Moreover, a marked increase in BAX protein expression was observed in the cisplatin group when compared with the control one. Histopathological examination exhibited significant seminiferous tubules atrophy in cisplatin-treated rats.

CONCLUSIONS: The BM-MSCs injection significantly repaired the testicular injury and improved both biochemical and histopathological changes. The MSCs mitigated the gonadotoxicity induced by cisplatin through antioxidative, anti-inflammatory, and antiapoptotic mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app