Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Altered Intrinsic Coupling between Functional Connectivity Density and Amplitude of Low-Frequency Fluctuation in Mild Cognitive Impairment with Depressive Symptoms.

Neuroimaging studies have demonstrated that major depressive disorder increases the risk of dementia in older individuals with mild cognitive impairment. We used resting-state functional magnetic resonance imaging to explore the intrinsic coupling patterns between the amplitude and synchronisation of low-frequency brain fluctuations using the amplitude of low-frequency fluctuations (ALFF) and the functional connectivity density (FCD) in 16 patients who had mild cognitive impairment with depressive symptoms (D-MCI) (mean age: 69.6 ± 6.2 years) and 18 patients with nondepressed mild cognitive impairment (nD-MCI) (mean age: 72.1 ± 9.7 years). Coupling was quantified as the correlations between the ALFF values and their associated FCDs. The results showed that the ALFF values in the D-MCI group were higher in the left medial prefrontal cortex (mPFC) and lower in the right precentral gyrus (preCG), and the FCD values were higher in the left medial temporal gyrus (MTG) than those in the nD-MCI group. Further, correlation analyses demonstrated that, in the D-MCI group, the mPFC was negatively correlated with the MTG. These findings may relate to the characteristics of mood disorders in patients with MCI, and they offer further insight into the neuropathophysiology of MCI with depressive symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app