Add like
Add dislike
Add to saved papers

Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a.

Angiogenesis after ischemic stroke has important clinical significance, which stimulates endogenous recovery mechanisms and improves the neurological outcome. Enhancing angiogenesis may facilitate the function recovery from ischemic stroke. Recent studies have shown that aberrant expression of long noncoding RNAs (lncRNAs) is related to angiogenesis after ischemic stroke. Snhg1, a cancer-related lncRNA, has been reported to be upregulated after stroke. However, little is known about its role in stroke. In this study, we performed in vitro experiments to investigate the effects of Snhg1 on cell survival and angiogenesis and molecular mechanism in ischemic stroke. Oxygen-glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemia/reperfusion injury in vitro. Sngh1 was increased in brain microvascular endothelial cells (BMECs) with the prolongation of exposure to OGD, and promoted BMEC survival under OGD/R condition, and angiogenesis after OGD/R treatment. miR-199a was identified and validated to be a direct target of Snhg1, and function effects of Snhg1 on BMEC survival and angiogenesis depended on miR-199a, which is involved in the regulation of hypoxia inducible factor and vascular endothelial cell growth factor expression. These findings contribute to a better understanding of the pathogenesis of ischemic stroke and facilitate the development of proangiogenesis therapy for this disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app