Add like
Add dislike
Add to saved papers

Sigma 1 Receptor Antagonists Inhibit Manic-Like Behaviors in Two Congenital Strains of Mice.

Background: Several currently available animal models reproduce select behavioral facets of human mania as well as the abnormal glutamatergic neurotransmission and dysregulation of glycogen synthase kinase 3β that accompanies this disease.

Methods: In this study, we addressed the therapeutic potential of ligands of sigma receptor type 1 (σ1R) in 2 putative models of mania: the "manic" Black Swiss outbred mice from Taconic farms (BStac) and mice with the 129 genetic background and histidine triad nucleotide-binding protein 1 (HINT1) deletion (HINT1-/- mice) that exhibit bipolar-like behaviors.

Results: The activity of control mice, which do not exhibit manic-like behaviors in the forced swim test, was significantly enhanced by MK801, an inhibitor of glutamate N-methyl-D-aspartate receptor activity, an effect that was not or barely observed in manic-like mice. Typical mood stabilizers, such as glycogen synthase kinase 3β inhibitors, but not σ1R ligands, reduced the N-methyl-D-aspartate receptor-mediated behaviors in control mice. Notably, σ1R antagonists S1RA, PD144418, BD1047, and BD1063, but not σ1R agonists PRE084 and PPCC, attenuated the manic-like behaviors of BStac and HINT1-/- mice by increasing antiactivity behaviors. The antimanic effects of a single administration of σ1R antagonists persisted for at least 24 hours, and these drugs did not alter the behavior of the "bipolar" HINT1-/- mice during pro-depressive episodes.

Conclusions: σ1R antagonists exhibit a selective normalizing effect on specific behavioral domains of mania without altering control (normal) or depressive-like behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app