Add like
Add dislike
Add to saved papers

Selective Conversion of Planar trans-Chlorins into Highly Twisted Doubly Fused Porphyrins or Chlorins via Oxidative Fusion.

β-to- o-phenyl doubly fused porphyrins (DFPs) or chlorins (DFCs) were selectively synthesized by facile oxidative fusion of trans-chlorins using 2,3-dichloro-5,6-dicyano-1,4- benzoquinone (DDQ) in good-to-excellent yields (70-92%) under mild reaction conditions with high atom economy. The selectivity in product formation (difused porphyrin or chlorin) was controlled by the presence or absence of a Ni(II) ion in the macrocyclic core. Notably, nickel(II) trans-chlorins selectively yielded DFPs, whereas free-base trans-chlorins afforded only DFCs. The synthesized fused porphyrinoids exhibited significantly red-shifted electronic spectral features (Δλmax = 16-53 nm) of the Soret band due to the extended π conjugation and highly twisted macrocyclic conformation (twist angle ∼20-34°). Inner-core NHs of fused chlorins exhibited a tremendous downfield shift (Δδ = 1.71-2.02 ppm) compared to their precursors. The overall protonation constants for indanedione-substituted free-base-difused chlorins (4-6) were profoundly higher (∼20-50-fold) compared to dicyanomethyl-appended free-base-difused chlorins (10-12) because of the combined effect of the electronic nature of the β-substituents and nonplanarity of the macrocyclic core. The first oxidation potential of H2 DFC(MN)2 Ph2 (12) was 0.54 V cathodically shifted with respect to H2 DFC(MN)2 (10) because of the electron-donating nature of the β-phenyl groups, which resulted in extensive destabilization of the highest occupied molecular orbital.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app