Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Distinctive types of postzygotic single-nucleotide mosaicisms in healthy individuals revealed by genome-wide profiling of multiple organs.

PLoS Genetics 2018 May
Postzygotic single-nucleotide mosaicisms (pSNMs) have been extensively studied in tumors and are known to play critical roles in tumorigenesis. However, the patterns and origin of pSNMs in normal organs of healthy humans remain largely unknown. Using whole-genome sequencing and ultra-deep amplicon re-sequencing, we identified and validated 164 pSNMs from 27 postmortem organ samples obtained from five healthy donors. The mutant allele fractions ranged from 1.0% to 29.7%. Inter- and intra-organ comparison revealed two distinctive types of pSNMs, with about half originating during early embryogenesis (embryonic pSNMs) and the remaining more likely to result from clonal expansion events that had occurred more recently (clonal expansion pSNMs). Compared to clonal expansion pSNMs, embryonic pSNMs had higher proportion of C>T mutations with elevated mutation rate at CpG sites. We observed differences in replication timing between these two types of pSNMs, with embryonic and clonal expansion pSNMs enriched in early- and late-replicating regions, respectively. An increased number of embryonic pSNMs were located in open chromatin states and topologically associating domains that transcribed embryonically. Our findings provide new insights into the origin and spatial distribution of postzygotic mosaicism during normal human development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app