Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Novel heart failure biomarkers: why do we fail to exploit their potential?

Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last decade, numerous studies have aimed to identify novel HF biomarkers that would provide superior and/or additional diagnostic, prognostic, or stratification utility. Although numerous biomarkers have been identified, their implementation in clinical practice has so far remained largely unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP) and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clinical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides, hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT), adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss the biology of these HF biomarkers and conclude that most of them are markers of general pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-specific. These characteristics explain to a large degree why it has been difficult to relate these biomarkers to a single disease. We propose that, in addition to clinical investigations, it will be pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in order to fully reveal the potential of these novel HF biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app