Add like
Add dislike
Add to saved papers

Predominance of N 6 -Methyladenine-Specific DNA Fragments Enriched by Multiple Immunoprecipitation.

N6 -methyladenine (6mA) is a rediscovered DNA modification in eukaryotic genomes. To explore the distribution and functions of 6mA, it is of paramount option to use immunoprecipitation to select 6mA-containing DNA fragments for genome-wide sequencing. Presumably, most of the 6mA-free fragments are removed, and the copulling down of the residual is stochastic and sequence-independent and thus they should not be called as peaks by computation. Surprisingly, here we show the predominance of 6mA-free fragments in the pulled-down fractions. By taking advantage of the submicromolar affinity of the antibodies, we further develop an elegant, multiple-round immunoprecipitation (MrIP) approach and show that 6mA-containing fragments can be enriched over 9100-fold and dominate in the final pulled-down fractions. This biochemical approach would greatly reduce the peak calling bias, which is caused by handling of dominated 6mA-free DNA fragments with an assumption-based algorithm computation and facilitates 6mA-pertinent data mining. The MrIP concept is extendable for the genome-wide sequencing of diverse DNA modifications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app